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Correlation products: modeling, theoreti-

cal and computational issues

The valuation of correlation products such as

STCDOs (giving protection on given “tranches”

such as 3%-6% [“attachment points”] of cu-

mulated losses on large porfolios of default-

prone credit instruments: corporate bonds, CDS...)

and similar credit derivatives shares with equity-

to-credit models the property of relying largely

on firm’s value models.

Most classical illustration (market standard for

the mark-to-market calibration of correlation

from observed prices of STCDOs): one-factor

gaussian copula (OGC) model. A Merton-type

model: N >> 0 obligors; the default of an

obligor occurs when the value of its assets fall

below a barrier (calibrated on CDS spreads).

Problem: how to take into account the corre-

lation of defaults ?



(After a suitable normalization) it is assumed

that the values of the assets of the obligors

are driven by a common standard normally dis-

tributed variable Z and normally distributed id-

iosyncratic factors Zi:

Vn(T ) = ̺Z +

√

1 − ̺2Zi.

Conditionnally on Z the Vn are independent,

making the model numerically tractable. Vari-

ous variants: multifactor models...

However, several shortcomings of these classi-

cal models:

• Correlation is not constant.

Fact: implied correlation computed from

observed STCDO prices depend on the at-

tachment points of the tranches (correla-

tion skews phenomenon).



Fundamental explanation to this behavior

of correlation:

“Because CDOs are sensitive to correla-

tion, and correlation of defaults is typically

driven by the business cycle, the correla-

tion risk of CDO tranches can be charac-

terized, and measured, as “business cycle

risk”... For example, mezzanine tranches

are leveraged bets on business cycle risk”

(Bank Int. Settl.)

Main issue in correlation modeling: quan-

tify market views on the business cycle risk;

incorporate to the pricing methodology; un-

derstand and calibrate correlation skews ac-

cordingly. Leads to a stochastic approach

to correlation (Zeliade’s model for CDOs

is based on these ideas.)

• Dynamic modeling. The Merton model of

the OGC approach is a static model. It can



be accomodated partially to the dynam-

ics of CDS spreads on the various oblig-

ors (semi-dynamic copula model); does not

give a consistent specification of underly-

ing CDS spreads dynamics.

Main issue: computational, need for new

ideas/new tools, even for a small number

of obligors.

• Recovery rates on the various obligors should

be stochastic (more on this point later).

Issues on which we will concentrate: impact

of correlation on recovery rates and compu-

tational problems from the dynamic modeling

point of view. Little was known on the last

topic (He-Keirstead-Rebholz, Zhou); the ana-

lytic approach gives little insight on the prob-

lem and leads very fast to untractable com-

putations. Geometrical/probabilistic approach

should change the whole picture.



Model of Lardy-Finkelstein : CreditGrades.

“Robust but simple framework linking the credit

and equity markets”. Structural, Black-Cox,

model : equity = call option on the assets Vt

of a firm. The firm defaults when the assets

fall below a barrier depending on the value of

the debt and on the recovery rate.

(Very nice) specificity of the model: explains

the short term spreads on bonds (classical limit

of structural models).

Various classical ways for modeling short term

spreads : jump processes, calibration of default

barrier on market spreads. LF have introduced

a random behavior of the barrier, that they in-

terpret as a random behavior of recovery rates.



Model:

dVt

Vt
= σdWt + µdt

Hypothesis: steady level of leverage (the debt

has the same drift as the stock price): µ = 0.

Debt: D, Recovery rates lognormal with mean

L and standard deviation λ:

L = LeλZ−λ2

2

Default occurs when assets fall below LD:

V0eσWt−
σ2t
2 > LDeλZ−λ2

2 .



Simplifying assumption: LF consider the pro-

cess

Xt := σWt − λZ −
σ2t

2
−

λ2

2

as the t ≥ 0 values of a BM starting in −∆t =
−λ2

σ2 , drift −σ2

2 , variance σ2.

The barrier condition now reads:

Xt > log(
LD

V0
) − λ2, t ∈ [−∆t, T ].

Survival probability computed as in Black-Cox:

P
′(t) = Φ(

−At

2
+

log(d)

At
) − dΦ(−

At

2
−

log(d)

At
).

d =
V0eλ2

LD
, At =

√

σ2t + λ2.



Correlation in a LF model on several assets

Correlation on asset values V i
t , i = 1,2 of OGC

type:

dV i
t

V i
t

= σidW i
t ,

Cov(W1
t , W2

t ) = ̺t.

How about recovery rates ?

Statistic studies and basic economic intuition

show that:

-Recovery rates are correlated

-They are negatively correlated to the frequency

of defaults



-The level of recovery rates is driven by the

same fundamentals than defaults, namely eco-

nomic cycles (which are approximated by the

common gaussian factor in OGC models).

Reasonable assumptions (to get a robust, sim-

ple and tractable model, as in the single-name

case):

∆t1 = ∆t2: same (relative) level of uncer-

tainty on recovery rates.

We take asset correlation as a proxy for the

correlation of recovery rates (equivalently, we

assume that recovery rates have the same sta-

tistical dependency as assets on macroeconom-

ical [resp. sectorial if the firms belong to the

same sector] fundamentals).



Pricing methodology

Problem : how to price a correlation product

on two credit instruments as a 1rst/2nd-to-

default swap ?

Single name case: closed formulas for credit

derivatives follow from the reflection principle

and the strong Markov property of BM (see

e.g. Bielecki-Rutkowski, Credit Risk: Model-

ing, Valuation and Hedging.).

Dimension n ≥ 2 : Problem = compute sur-

vival probabilities, exit times, transition densi-

ties for BM(n) in a polyedral cone. Geometry

of the cone given by assets correlation matrix.

Known: in dim. 2, partial result: Sommerfeld

reflection principle (particular case when angle

of the cone β = π
n).



The geometrical approach

Fundamental idea : the planar BM should be

replaced by another (new kind of) process,

better suited to the problem.

Construction: the planar BM is lifted to the

universal covering of R2 − {0,0}. The new

paths on R+×R are projected onto the (locally

euclidean) quotient space R+ × R

2β.

It follows from the classical theory of paths and

covering spaces that paths on R2 − {0,0} are

(essentially) in bijection with paths on R+ ×
R

2β. Moreover all the properties of the Brow-

nian motion that rely only on local arguments

(where local means with respect to time and

space simultaneously) also hold for the new

process written Xβ(t) on the state space R+×
R

2β.



The classical proofs hold mutatis mutandis.

For example, the density of Xβ(t + ǫ), 0 <

ǫ << 1 at z + reiζ for r << ||z|| conditional

to Xβ(t) = z is given by:

f(z, z + reiζ, ǫ) =
1

2πǫ
e−

r2

2ǫ .

Similarly, the transition probability densities

f((ρ, θ), (µ, κ), t)

satisfy the Kolmogorov forward equation:

∂f

∂t
=

1

2
[
∂2f

∂µ2
+

1

µ

∂f

∂µ
+

1

µ2

∂2f

∂κ2
],

where (ρ, θ) and (µ, κ) belong to R+ × R/2β,

with the initial condition:

f((ρ, θ), (µ, κ),0) = δ(ρ,θ)=(µ,κ).

Theorem 1 The transition probability densi-

ties f((ρ, θ), (µ, κ), t) for the process Xβ are



given by:

1

β

∫ ∞

0
λe−λ2t[

1

2
J0(λµ)J0(λρ)

+
∞
∑

n=1

Jnπ
β
(λµ)Jnπ

β
(λρ)cos(

nπ

β
(κ − θ))]dλ.

This formula is a natural generalization to R+×

R/2β of the classical formula for heat conduc-

tion, when expanded in terms of Bessel func-

tions. Indeed, let β = π. Then, Xβ identifies

with the standard Brownian motion. Consid-

ering the heat equation ∂f
∂t = 1

2∆f , the tem-

perature at (µ, κ) at t due to an instantaneous

unit source at (ρ, θ) at t = 0 is given by:

1

2πt
e−

R2

2t =
1

2π

∞
∫

0

λe−
λ2t
2 J0(λR)dλ

(Weber’s first integral), where R2 = ρ2 + µ2 −

2ρµcos(κ − θ). The identification with the for-

mula in the Proposition when β = π follows



from Neumann’s expansion:

J0(λR) = J0(λρ)J0(λµ)

+2
∞
∑

n=1

Jn(λρ)Jn(λµ)cosn(θ − κ).

Conclusion for credit derivatives: in a dynami-

cal setting, no hope to get closed pricing for-

mula for correlation products avoiding special

functions. On the other hand, formulas ob-

tained can look weird at the first sight but, in

the end, should be well adaped to a numerical

treatment.

The generalized reflection principle.

Theorem 2 (Generalized reflection principle)

We have:

P(Xx(T ) ∈ dµeidκ, τ ≤ T ) = P(Xβ(T ) ∈ dµdκ, τ ≤ T )



= P(X′
β(T ) ∈ dµ · dκ),

Here, Xx is a planar BM starting from x, τ is

the exit time from a cone (angle β), Xβ is the

lift of Xx to R+ × R

2β and X′
β is the reflexion

of Xβ along the barrier in the new state space.

Corollary: all the computations, all the single

name pricing formulas that rely on the reflec-

tion principle and the stong Markov properties

of BM(1) translate automatically into formulas

for derivatives on two correlated assets, replac-

ing BM(1) by the new processes.

Pricing of a digital swap on two credit in-

struments.

We assume that the defaults of the underlyings

are driven by the 2-dim generalization of the

Lardy-Finkelstein model.



We assume eg that the swap S is a first-to-

default of digital type: the payoff (say 1) is

settled at the maturity date T ; the protection

buyer pays (continuously) a spread s. We have

to solve for s so that the expected premium

payments equal the expected loss payouts.

Parameters for the underlyings are as in the

beginning, r is the (constant) riskfree interest

rate.

Theorem 3 The price (the spread s) of the

digital-type swap S is given by:

s = r
A

B + C − A
,

where, for example:

A = e−rT
∞
∫

0

β
∫

0

2µ

β(T + ∆t)
e<~φ|~µ−~ρ>−

||~φ||2(T+∆t)
2



∞
∑

n=1

e
− ρ2+µ2

2(T+∆t)sin(
nπθ

β
)sin(

nπκ

β
)Inπ

β
(

ρµ

T + ∆t
)dµdκ.

and where:

yi := log(
L

i
Di

V i
0

) − (λi)2, i = 1,2;

νi :=
σ2

i

2
,

β =
π

2
+ arcsin(̺)

φ1 :=
ν1σ2 − ν2σ1̺

σ1σ2

√

1 − ̺2

φ2 :=
ν2

σ2

ρeiθ =
y1σ2 − sin(2α)y2σ1

σ1σ2

√

1 − ̺2
+ i

y2

σ2

B and C are also given by double integrals of

Bessel function (structurally slightly different,



but of the same numerical complexity as A).

Proof : generalized reflection principle + local

properties of BM(2) + Girsanov.


